|
| 1 | +# -*- coding: utf-8 -*- |
| 2 | + |
| 3 | +""" |
| 4 | +*************************************************************************** |
| 5 | + BasicStatistics.py |
| 6 | + --------------------- |
| 7 | + Date : November 2016 |
| 8 | + Copyright : (C) 2016 by Nyall Dawson |
| 9 | + Email : nyall dot dawson at gmail dot com |
| 10 | +*************************************************************************** |
| 11 | +* * |
| 12 | +* This program is free software; you can redistribute it and/or modify * |
| 13 | +* it under the terms of the GNU General Public License as published by * |
| 14 | +* the Free Software Foundation; either version 2 of the License, or * |
| 15 | +* (at your option) any later version. * |
| 16 | +* * |
| 17 | +*************************************************************************** |
| 18 | +""" |
| 19 | + |
| 20 | +__author__ = 'Nyall Dawson' |
| 21 | +__date__ = 'November 2016' |
| 22 | +__copyright__ = '(C) 2016, Nyall Dawson' |
| 23 | + |
| 24 | +# This will get replaced with a git SHA1 when you do a git archive |
| 25 | + |
| 26 | +__revision__ = '$Format:%H$' |
| 27 | + |
| 28 | +import os |
| 29 | +import codecs |
| 30 | + |
| 31 | +from qgis.PyQt.QtCore import QVariant |
| 32 | +from qgis.PyQt.QtGui import QIcon |
| 33 | + |
| 34 | +from qgis.core import (QgsStatisticalSummary, |
| 35 | + QgsStringStatisticalSummary, |
| 36 | + QgsDateTimeStatisticalSummary, |
| 37 | + QgsFeatureRequest) |
| 38 | + |
| 39 | +from processing.core.GeoAlgorithm import GeoAlgorithm |
| 40 | +from processing.core.parameters import ParameterTable |
| 41 | +from processing.core.parameters import ParameterTableField |
| 42 | +from processing.core.outputs import OutputHTML |
| 43 | +from processing.core.outputs import OutputNumber |
| 44 | +from processing.tools import dataobjects, vector |
| 45 | + |
| 46 | + |
| 47 | +pluginPath = os.path.split(os.path.split(os.path.dirname(__file__))[0])[0] |
| 48 | + |
| 49 | + |
| 50 | +class BasicStatisticsForField(GeoAlgorithm): |
| 51 | + |
| 52 | + INPUT_LAYER = 'INPUT_LAYER' |
| 53 | + FIELD_NAME = 'FIELD_NAME' |
| 54 | + OUTPUT_HTML_FILE = 'OUTPUT_HTML_FILE' |
| 55 | + |
| 56 | + MIN = 'MIN' |
| 57 | + MAX = 'MAX' |
| 58 | + COUNT = 'COUNT' |
| 59 | + UNIQUE = 'UNIQUE' |
| 60 | + EMPTY = 'EMPTY' |
| 61 | + FILLED = 'FILLED' |
| 62 | + MIN_LENGTH = 'MIN_LENGTH' |
| 63 | + MAX_LENGTH = 'MAX_LENGTH' |
| 64 | + MEAN_LENGTH = 'MEAN_LENGTH' |
| 65 | + CV = 'CV' |
| 66 | + SUM = 'SUM' |
| 67 | + MEAN = 'MEAN' |
| 68 | + STD_DEV = 'STD_DEV' |
| 69 | + RANGE = 'RANGE' |
| 70 | + MEDIAN = 'MEDIAN' |
| 71 | + MINORITY = 'MINORITY' |
| 72 | + MAJORITY = 'MAJORITY' |
| 73 | + FIRSTQUARTILE = 'FIRSTQUARTILE' |
| 74 | + THIRDQUARTILE = 'THIRDQUARTILE' |
| 75 | + IQR = 'IQR' |
| 76 | + |
| 77 | + def getIcon(self): |
| 78 | + return QIcon(os.path.join(pluginPath, 'images', 'ftools', 'basic_statistics.png')) |
| 79 | + |
| 80 | + def defineCharacteristics(self): |
| 81 | + self.name, self.i18n_name = self.trAlgorithm('Basic statistics for fields') |
| 82 | + self.group, self.i18n_group = self.trAlgorithm('Vector table tools') |
| 83 | + self.tags = self.tr('stats,statistics,date,time,datetime,string,number,text,table,layer,maximum,minimum,mean,average,standard,deviation,' |
| 84 | + 'count,distinct,unique,variance,median,quartile,range,majority,minority') |
| 85 | + |
| 86 | + self.addParameter(ParameterTable(self.INPUT_LAYER, |
| 87 | + self.tr('Input table'))) |
| 88 | + self.addParameter(ParameterTableField(self.FIELD_NAME, |
| 89 | + self.tr('Field to calculate statistics on'), |
| 90 | + self.INPUT_LAYER)) |
| 91 | + |
| 92 | + self.addOutput(OutputHTML(self.OUTPUT_HTML_FILE, |
| 93 | + self.tr('Statistics'))) |
| 94 | + |
| 95 | + self.addOutput(OutputNumber(self.COUNT, self.tr('Count'))) |
| 96 | + self.addOutput(OutputNumber(self.UNIQUE, self.tr('Number of unique values'))) |
| 97 | + self.addOutput(OutputNumber(self.EMPTY, self.tr('Number of empty (null) values'))) |
| 98 | + self.addOutput(OutputNumber(self.FILLED, self.tr('Number of non-empty values'))) |
| 99 | + self.addOutput(OutputNumber(self.MIN, self.tr('Minimum value'))) |
| 100 | + self.addOutput(OutputNumber(self.MAX, self.tr('Maximum value'))) |
| 101 | + self.addOutput(OutputNumber(self.MIN_LENGTH, self.tr('Minimum length'))) |
| 102 | + self.addOutput(OutputNumber(self.MAX_LENGTH, self.tr('Maximum length'))) |
| 103 | + self.addOutput(OutputNumber(self.MEAN_LENGTH, self.tr('Mean length'))) |
| 104 | + self.addOutput(OutputNumber(self.CV, self.tr('Coefficient of Variation'))) |
| 105 | + self.addOutput(OutputNumber(self.SUM, self.tr('Sum'))) |
| 106 | + self.addOutput(OutputNumber(self.MEAN, self.tr('Mean value'))) |
| 107 | + self.addOutput(OutputNumber(self.STD_DEV, self.tr('Standard deviation'))) |
| 108 | + self.addOutput(OutputNumber(self.RANGE, self.tr('Range'))) |
| 109 | + self.addOutput(OutputNumber(self.MEDIAN, self.tr('Median'))) |
| 110 | + self.addOutput(OutputNumber(self.MINORITY, self.tr('Minority (rarest occurring value)'))) |
| 111 | + self.addOutput(OutputNumber(self.MAJORITY, self.tr('Majority (most frequently occurring value)'))) |
| 112 | + self.addOutput(OutputNumber(self.FIRSTQUARTILE, self.tr('First quartile'))) |
| 113 | + self.addOutput(OutputNumber(self.THIRDQUARTILE, self.tr('Third quartile'))) |
| 114 | + self.addOutput(OutputNumber(self.IQR, self.tr('Interquartile Range (IQR)'))) |
| 115 | + |
| 116 | + def processAlgorithm(self, progress): |
| 117 | + layer = dataobjects.getObjectFromUri( |
| 118 | + self.getParameterValue(self.INPUT_LAYER)) |
| 119 | + field_name = self.getParameterValue(self.FIELD_NAME) |
| 120 | + field = layer.fields().at(layer.fields().lookupField(field_name)) |
| 121 | + |
| 122 | + output_file = self.getOutputValue(self.OUTPUT_HTML_FILE) |
| 123 | + |
| 124 | + request = QgsFeatureRequest().setFlags(QgsFeatureRequest.NoGeometry).setSubsetOfAttributes([field_name], layer.fields()) |
| 125 | + features = vector.features(layer, request) |
| 126 | + |
| 127 | + data = [] |
| 128 | + data.append(self.tr('Analyzed layer: {}').format(layer.name())) |
| 129 | + data.append(self.tr('Analyzed field: {}').format(field_name)) |
| 130 | + |
| 131 | + if field.isNumeric(): |
| 132 | + data.extend(self.calcNumericStats(features, progress, field)) |
| 133 | + elif field.type() in (QVariant.Date, QVariant.Time, QVariant.DateTime): |
| 134 | + data.extend(self.calcDateTimeStats(features, progress, field)) |
| 135 | + else: |
| 136 | + data.extend(self.calcStringStats(features, progress, field)) |
| 137 | + |
| 138 | + self.createHTML(output_file, data) |
| 139 | + |
| 140 | + def calcNumericStats(self, features, progress, field): |
| 141 | + count = len(features) |
| 142 | + total = 100.0 / float(count) |
| 143 | + stat = QgsStatisticalSummary() |
| 144 | + for current, ft in enumerate(features): |
| 145 | + stat.addVariant(ft[field.name()]) |
| 146 | + progress.setPercentage(int(current * total)) |
| 147 | + stat.finalize() |
| 148 | + |
| 149 | + cv = stat.stDev() / stat.mean() if stat.mean() != 0 else 0 |
| 150 | + |
| 151 | + self.setOutputValue(self.COUNT, stat.count()) |
| 152 | + self.setOutputValue(self.UNIQUE, stat.variety()) |
| 153 | + self.setOutputValue(self.EMPTY, stat.countMissing()) |
| 154 | + self.setOutputValue(self.FILLED, count - stat.countMissing()) |
| 155 | + self.setOutputValue(self.MIN, stat.min()) |
| 156 | + self.setOutputValue(self.MAX, stat.max()) |
| 157 | + self.setOutputValue(self.RANGE, stat.range()) |
| 158 | + self.setOutputValue(self.SUM, stat.sum()) |
| 159 | + self.setOutputValue(self.MEAN, stat.mean()) |
| 160 | + self.setOutputValue(self.MEDIAN, stat.median()) |
| 161 | + self.setOutputValue(self.STD_DEV, stat.stDev()) |
| 162 | + self.setOutputValue(self.CV, cv) |
| 163 | + self.setOutputValue(self.MINORITY, stat.minority()) |
| 164 | + self.setOutputValue(self.MAJORITY, stat.majority()) |
| 165 | + self.setOutputValue(self.FIRSTQUARTILE, stat.firstQuartile()) |
| 166 | + self.setOutputValue(self.THIRDQUARTILE, stat.thirdQuartile()) |
| 167 | + self.setOutputValue(self.IQR, stat.interQuartileRange()) |
| 168 | + |
| 169 | + data = [] |
| 170 | + data.append(self.tr('Count: {}').format(stat.count())) |
| 171 | + data.append(self.tr('Unique values: {}').format(stat.variety())) |
| 172 | + data.append(self.tr('NULL (missing) values: {}').format(stat.countMissing())) |
| 173 | + data.append(self.tr('Minimum value: {}').format(stat.min())) |
| 174 | + data.append(self.tr('Maximum value: {}').format(stat.max())) |
| 175 | + data.append(self.tr('Range: {}').format(stat.range())) |
| 176 | + data.append(self.tr('Sum: {}').format(stat.sum())) |
| 177 | + data.append(self.tr('Mean value: {}').format(stat.mean())) |
| 178 | + data.append(self.tr('Median value: {}').format(stat.median())) |
| 179 | + data.append(self.tr('Standard deviation: {}').format(stat.stDev())) |
| 180 | + data.append(self.tr('Coefficient of Variation: {}').format(cv)) |
| 181 | + data.append(self.tr('Minority (rarest occurring value): {}').format(stat.minority())) |
| 182 | + data.append(self.tr('Majority (most frequently occurring value): {}').format(stat.majority())) |
| 183 | + data.append(self.tr('First quartile: {}').format(stat.firstQuartile())) |
| 184 | + data.append(self.tr('Third quartile: {}').format(stat.thirdQuartile())) |
| 185 | + data.append(self.tr('Interquartile Range (IQR): {}').format(stat.interQuartileRange())) |
| 186 | + return data |
| 187 | + |
| 188 | + def calcStringStats(self, features, progress, field): |
| 189 | + count = len(features) |
| 190 | + total = 100.0 / float(count) |
| 191 | + stat = QgsStringStatisticalSummary() |
| 192 | + for current, ft in enumerate(features): |
| 193 | + stat.addValue(ft[field.name()]) |
| 194 | + progress.setPercentage(int(current * total)) |
| 195 | + stat.finalize() |
| 196 | + |
| 197 | + self.setOutputValue(self.COUNT, stat.count()) |
| 198 | + self.setOutputValue(self.UNIQUE, stat.countDistinct()) |
| 199 | + self.setOutputValue(self.EMPTY, stat.countMissing()) |
| 200 | + self.setOutputValue(self.FILLED, stat.count() - stat.countMissing()) |
| 201 | + self.setOutputValue(self.MIN, stat.min()) |
| 202 | + self.setOutputValue(self.MAX, stat.max()) |
| 203 | + self.setOutputValue(self.MIN_LENGTH, stat.minLength()) |
| 204 | + self.setOutputValue(self.MAX_LENGTH, stat.maxLength()) |
| 205 | + self.setOutputValue(self.MEAN_LENGTH, stat.meanLength()) |
| 206 | + |
| 207 | + data = [] |
| 208 | + data.append(self.tr('Count: {}').format(count)) |
| 209 | + data.append(self.tr('Unique values: {}').format(stat.countDistinct())) |
| 210 | + data.append(self.tr('NULL (missing) values: {}').format(stat.countMissing())) |
| 211 | + data.append(self.tr('Minimum value: {}').format(stat.min())) |
| 212 | + data.append(self.tr('Maximum value: {}').format(stat.max())) |
| 213 | + data.append(self.tr('Minimum length: {}').format(stat.minLength())) |
| 214 | + data.append(self.tr('Maximum length: {}').format(stat.maxLength())) |
| 215 | + data.append(self.tr('Mean length: {}').format(stat.meanLength())) |
| 216 | + |
| 217 | + return data |
| 218 | + |
| 219 | + def calcDateTimeStats(self, features, progress, field): |
| 220 | + count = len(features) |
| 221 | + total = 100.0 / float(count) |
| 222 | + stat = QgsDateTimeStatisticalSummary() |
| 223 | + for current, ft in enumerate(features): |
| 224 | + stat.addValue(ft[field.name()]) |
| 225 | + progress.setPercentage(int(current * total)) |
| 226 | + stat.finalize() |
| 227 | + |
| 228 | + self.setOutputValue(self.COUNT, stat.count()) |
| 229 | + self.setOutputValue(self.UNIQUE, stat.countDistinct()) |
| 230 | + self.setOutputValue(self.EMPTY, stat.countMissing()) |
| 231 | + self.setOutputValue(self.FILLED, stat.count() - stat.countMissing()) |
| 232 | + self.setOutputValue(self.MIN, stat.statistic(QgsDateTimeStatisticalSummary.Min)) |
| 233 | + self.setOutputValue(self.MAX, stat.statistic(QgsDateTimeStatisticalSummary.Max)) |
| 234 | + |
| 235 | + data = [] |
| 236 | + data.append(self.tr('Count: {}').format(count)) |
| 237 | + data.append(self.tr('Unique values: {}').format(stat.countDistinct())) |
| 238 | + data.append(self.tr('NULL (missing) values: {}').format(stat.countMissing())) |
| 239 | + data.append(self.tr('Minimum value: {}').format(field.displayString(stat.statistic(QgsDateTimeStatisticalSummary.Min)))) |
| 240 | + data.append(self.tr('Maximum value: {}').format(field.displayString(stat.statistic(QgsDateTimeStatisticalSummary.Max)))) |
| 241 | + |
| 242 | + return data |
| 243 | + |
| 244 | + def createHTML(self, outputFile, algData): |
| 245 | + with codecs.open(outputFile, 'w', encoding='utf-8') as f: |
| 246 | + f.write('<html><head>\n') |
| 247 | + f.write('<meta http-equiv="Content-Type" content="text/html; \ |
| 248 | + charset=utf-8" /></head><body>\n') |
| 249 | + for s in algData: |
| 250 | + f.write('<p>' + str(s) + '</p>\n') |
| 251 | + f.write('</body></html>\n') |
0 commit comments