
QGIS Application - Bug report #8775

PyQGIS QgsPoint has a __hash__ function, even though it is mutable

2013-10-05 05:01 AM - J. Dugge

Status: Closed

Priority: Normal

Assignee:

Category: Python plugins

Affected QGIS version:master Regression?: No

Operating System: Easy fix?: No

Pull Request or Patch supplied:No Resolution: end of life

Crashes QGIS or corrupts data:No Copied to github as #: 17481

Description

The QgsPoint class in PyQGIS has a (automatically generated?) __hash__ function, which returns a hash value that does not depend on

the coordinates of the point. This leads to the inconsistent behaviour that two points that are equal according to QgsPoint.__eq__ do not

have the same hash value, which causes problems with functions that rely on proper __hash__ behaviour, like set.

To reproduce this, load a polygon layer and run the following in the Python console:

provider = iface.activeLayer().dataProvider()

for f in provider.getFeatures():

  feature = f

points = f.geometry().asPolygon()[0]

points[0] == points[1]

# Returns True, the first and last points in a polygon are identical

set(points)

# The first/last point appears twice in the set, even though it should only appear once according to the equality

To fix this, the __hash__ function in QgsPoint should be removed (e.g. by setting QgsPoint.__hash__ = None), which will raise 

TypeError: unhashable type: 'QgsPoint' when set is used with a list of QgsPoint objects.

Associated revisions

Revision 44b77671 - 2013-10-12 12:26 PM - Matthias Kuhn

Create hash method for QgsPoint (Fix #8775)

History

#1 - 2013-10-06 04:48 AM - Matthias Kuhn

For reference:

http://www.mail-archive.com/pyqt@riverbankcomputing.com/msg15114.html

#2 - 2013-10-12 03:26 AM - Matthias Kuhn

- Status changed from Open to Closed

2024-03-20 1/2

http://www.mail-archive.com/pyqt@riverbankcomputing.com/msg15114.html


Fixed in changeset commit:"44b7767134e442b95b6d99a1cbe612d2aeb856c7".

#3 - 2013-10-12 05:15 AM - J. Dugge

Thanks for the quick reaction!

I think the changeset doesn't actually fix the issue though: QgsPoint is a mutable type (its value can be changed using `setX()`, for instance), and as such,

it mustn't have a __hash__() function (see http://docs.python.org/2/glossary.html#term-hashable)

Consider the following to see why the new implementation is problematic:

a = QgsPoint(0,0)

b = QgsPoint(1,1)

c = set([a,b])

print c

# correctly returns [(0,0),(1,1)]

a.set(1,1)

print c

# returns [(1,1),(1,1)], which is incorrect

The proper way to fix this is to remove the __hash__ function by setting __hash__ = None, which explicitly marks the class as the mutable and unhashable

type it is (http://docs.python.org/2/reference/datamodel.html#object.__hash__) so set operations (which don't work with mutable types) are disabled.

#4 - 2013-10-13 01:50 AM - J. Dugge

- Status changed from Closed to Reopened

#5 - 2017-05-01 01:09 AM - Giovanni Manghi

- Regression? set to No

- Easy fix? set to No

#6 - 2019-03-09 04:04 PM - Giovanni Manghi

- Resolution set to end of life

- Status changed from Reopened to Closed

End of life notice: QGIS 2.18 LTR

Source:

http://blog.qgis.org/2019/03/09/end-of-life-notice-qgis-2-18-ltr/

2024-03-20 2/2

http://docs.python.org/2/glossary.html#term-hashable
http://docs.python.org/2/reference/datamodel.html#object.__hash__
http://blog.qgis.org/2019/03/09/end-of-life-notice-qgis-2-18-ltr/

