
QGIS Application - Bug report #16203

SQL To Determine Prrimary Key column_names does not handle views or situations where

constraint_name <> index_name

2017-02-16 10:55 PM - Simon Greener

Status: Closed

Priority: Normal

Assignee:

Category: Data Provider/Oracle

Affected QGIS version:2.18.3 Regression?: No

Operating System: Easy fix?: No

Pull Request or Patch supplied:No Resolution: end of life

Crashes QGIS or corrupts data:No Copied to github as #: 24113

Description

All the testing was done by myself on Windows 10 64 bit using QGIS 2.18.3 against Oracle 12.1.

The requests below come from consulting work that I have completed for a customer who is using QGIS Desktop and QGIS Server

against Oracle Spatial and are affecting their implementation.

Issue 1:

The current QGIS Oracle code that discovers the column_name

associated with a primary key of a table (or materialized view) does not

support situations where the constraint_name is not equal to the

index_name.

create table foo (

 fid number(10,0),

 fid_int Integer,

 fid_num9 number(9,0),

 fid_num8 number(8,0),

 fid_num7 number(7,0),

 an_attribute varchar2(10),

 geom sdo_geometry

);

ALTER TABLE FOO ADD CONSTRAINT FOO_PK PRIMARY KEY (FID);

Current QGIS SQL for detecting PK:

SELECT column_name

 FROM all_ind_columns a

 JOIN all_constraints b

 ON a.index_name=constraint_name AND a.index_owner=b.owner

 WHERE b.constraint_type='P' AND b.owner='QGIS' AND b.table_name='FOO';

-- FID

However, an alternate and very commonly used method for creating a primary key is:

alter table foo drop constraint foo_pk;

create unique index foo_fid_uidx on foo(fid); /* Create UNIQUE Index Before define primary key /

alter table foo add constraint foo_pk primary key (fid) using index foo_fid_uidx; / Note that PK uses pre-existing unique index */

The current QGIS SQL can be easily modified to cope with this situation:

SELECT column_name

 FROM all_ind_columns a

 INNER JOIN

 all_constraints b

 ON (a.index_owner=b.owner AND a.table_name=b.table_name AND a.index_name=b.index_name)

2024-04-27 1/3

 WHERE b.constraint_type='P' AND b.owner='QGIS' AND b.table_name='FOO';

Request 1: Current QGIS Oracle code modified to use more complete SQL

Note: The above works also for materialized views as they are implemented as tables.

Issue 2: Views

If we create a view over the FOO table:

create view vw_foo as select * from foo;

We can add primary key metadata as follows:

alter view vw_foo add constraint vw_foo_pk primary key (fid) disable;

But even the modified SQL for finding a PK does not work.

The SQL that I have created that detects any primary key for a view is:

-- Try modified table query

SELECT column_name

 FROM all_ind_columns a

 INNER JOIN

 all_constraints b

 ON (a.index_owner=b.owner AND a.table_name=b.table_name AND a.index_name=b.index_name)

 WHERE b.constraint_type='P' AND b.owner='QGIS' AND b.table_name='VW_FOO';

-- no rows selected

-- OK construct more complicated query

select c.owner, c.table_name, d.column_name,

 c.constraint_name, c.constraint_type, c.index_name

 from user_constraints a

 inner join

 user_dependencies b

 on (b.name = a.table_name

 and b.type = 'VIEW'

 and b.referenced_type = 'TABLE')

 inner join

 user_constraints c

 on (c.owner = b.referenced_owner

 and c.table_name = b.referenced_name

 and c.constraint_type = 'P'

 and c.index_name is not null)

 inner join

 all_ind_columns d

 ON (d.index_owner= c.owner

 AND d.table_name = c.table_name

 AND d.index_name = c.index_name

)

 where a.table_name = 'VW_FOO'

 and a.constraint_type = 'P'

 and a.view_related = 'DEPEND ON VIEW';

/*

OWNER TABLE_NAME COLUMN_NAME CONSTRAINT_NAME CONSTRAINT_TYPE INDEX_NAME

----- ---------- ----------- --------------- --------------- ------------

QGIS FOO FID FOO_PK P FOO_FID_UIDX

*/

It works.

Request 2: Could SQL to detect view PKs be implemented in QGIS please?

Issue 3:

Even if a primary key column is detected, QGIS does not display the column_name in its Layer Dialog.

2024-04-27 2/3

**Request 3: Can QGIS be fixed to display the primary key column name?

I have attached a worked SQL script for all the cases above.

regards

Simon

History

#1 - 2017-05-01 01:01 AM - Giovanni Manghi

- Easy fix? set to No

- Regression? set to No

#2 - 2017-09-08 01:35 PM - Jürgen Fischer

- Assignee deleted (Jürgen Fischer)

#3 - 2019-03-09 03:09 PM - Giovanni Manghi

- Resolution set to end of life

- Status changed from Open to Closed

End of life notice: QGIS 2.18 LTR

Source:

http://blog.qgis.org/2019/03/09/end-of-life-notice-qgis-2-18-ltr/

QGIS 3.4 has recently become our new Long Term Release (LTR) version. This is a major step in our history – a long term release version based on the

massive updates, library upgrades and improvements that we carried out in the course of the 2.x to 3x upgrade cycle.

We strongly encourage all users who are currently using QGIS 2.18 LTR as their preferred QGIS release to migrate to QGIS 3.4. This new LTR version

will receive regular bugfixes for at least one year. It also includes hundreds of new functions, usability improvements, bugfixes, and other goodies. See the

relevant changelogs for a good sampling of all the new features that have gone into version 3.4

Most plugins have been either migrated or incorporated into the core QGIS code base.

We strongly discourage the continued use of QGIS 2.18 LTR as it is now officially unsupported, which means we’ll not provide any bug fix releases for it.

You should also note that we intend to close all bug tickets referring to the now obsolete LTR version. Original reporters will receive a notification of the

ticket closure and are encouraged to check whether the issue persists in the new LTR, in which case they should reopen the ticket.

If you would like to better understand the QGIS release roadmap, check out our roadmap page! It outlines the schedule for upcoming releases and will help

you plan your deployment of QGIS into an operational environment.

The development of QGIS 3.4 LTR has been made possible by the work of hundreds of volunteers, by the investments of companies, professionals, and

administrations, and by continuous donations and financial support from many of you. We sincerely thank you all and encourage you to collaborate and

support the project even more, for the long term improvement and sustainability of the QGIS project.

2024-04-27 3/3

http://blog.qgis.org/2019/03/09/end-of-life-notice-qgis-2-18-ltr/

