
Extending the Funtionality of QGIS with Python PluginsWorkshop FOSS4G 2008Dr. Maro Hugentobler Dr. Horst Düster Tim SuttonSeptember 20081 IntrodutionQGIS is a popular desktop GIS written in C++. Besides the possibility of writing extensions inC++, there is the python interfae to QGIS (PyQGIS). There are three ways to use PyQGIS:
• From a python ommand line onsole whih is mainly interesting for debugging.
• As QGIS plugins written in Python. Those plugins may be enabled in the plugin managerjust like C++ plugins.
• Standalone appliations in Python with their own user interfaes may use the funtion-ality of the QGIS ore library.This workshop provides a beginner's tutorial for writing QGIS Python plugins.2 Why Python?Python is a sripting language whih was designed with the goal of being easy to program.It has a mehanism that automatially releases memory that is no longer used (garbaggeolletor). A further advantage is that many programs that are written in C++ or Java o�erthe possibility to write extensions in Python, e.g. OpenO�e or Gimp. Therefore it is a goodinvestment of time to learn the Python language.3 LiensePyQGIS plugins use funtionality of libqgis_ore.so and libqgis_gui.so. As both are liensedundere GPL, QGIS Python plugins must be liened under the GPL too. This means you mayuse your plugins for any purpose and you are not fored to publish them. If you do publishthem however, they must be published under the onditions of the GPL liense. With Pythonprograms, this restrition is not as important as for ompiled programs, beause the soureode is visible anyway.

1

4 What needs to be installed to get startedOn the lab omputers, everything for the workshop is already installed. If you program Pythonplugins at home, you will need the following libraries and programs:
• QGIS
• Python
• Qt
• PyQT
• PyQt development toolsIf you use Linux, there are binary pakages for all major distributions. For Windows, thePyQt installer already ontains Qt, PyQt and the PyQt development tools.5 A PyQGIS Example Plugin in three StepsOur example plugin is intentionally kept simple. It adds a button to the menu bar of QGIS.If the button is liked, a �le dialog appears where the user may load a shape �le.For eah python plugin, a dediated folder that ontains the plugin �les needs to bereated. By default, QGIS looks for plugins in $QGIS_DIR/share/qgis/python/plugins (inour workshop /usr/share/qgis/python/plugins). On Linux, there is also the possibility to haveplugins in $HOME/.qgis/python/plugins suh that it is only visible for one user.5.1 Step 1: Make the plugin manager reognise the pluginTo provide the neessary information for QGIS, the plugin needs to implement the methods'name()', 'desription()' and 'version()' whih return desriptive strings. A plugin also needsa method 'lassFatory(QgisInterfae)' whih is alled by the plugin manager to reate aninstane of the plugin. The argument of type QGisInterfae is used by the plugin to aessfuntions of the QGIS instane. We are going to work with this objet in step 2.Note that, in ontrast to other programing languages, indention is very important. ThePython interpreter throws an error if it is not orret.First we reate the plugin folder 'foss4g_plugin' in QGIS/python/plugins. Then we addtwo new text�les into this folder, 'foss4gplugin.py' and '__init__.py'.
• The �le foss4gplugin.py ontains the plugin lass:# -*- oding: utf-8 -*-# Import the PyQt and QGIS librariesfrom PyQt4.QtCore import *from PyQt4.QtGui import *from qgis.ore import *# Initialize Qt resoures from �le resoures.pyimport resoures 2

lass FOSS4GPlugin:def __init__(self, ifae):# Save referene to the QGIS interfaeself.ifae = ifaedef initGui(self):print 'Initialising GUI'def unload(self):print 'Unloading plugin'
• The �le __init__.py ontains the methods 'name', 'desription', 'version' and 'lass-Fator'y. As we are reating a new instane of the plugin lass, we need to import theode of this lass:# -*- oding: utf-8 -*-from foss4gplugin import FOSS4GPlugindef name():return "FOSS4G example"def desription():return "A simple example plugin to load shape�les"def version():return "Version 0.1"def lassFatory(ifae):return FOSS4GPlugin(ifae)Now the plugin has the neessary infrastruture to appear in the QGIS plugin managerand be loaded / unloaded.5.2 Step2: Add a button and a menu5.2.1 IonTo make the ion graphi available for our program, we need a so-alled resoure �le. In theresoure �le, the graphi is ontained in hexadeimal notation. Fortunately, we don't needto are about its representation beause we use the pyr ompiler, a tool that reads the �le'resoures.qr' and reates a resoure �le.The �le 'foss4g.png' and the resoure �le an be downloaded fromhttp://karlinapp.ethz.h/python_foss4g. Move these �les into the diretory of the exampleplugin. Open a shell, d to the plugin diretory and enter: <path_to_QGIS_folder>/pyr4-o resoures.py resoures.qr.5.2.2 Add a menu and a buttonIn this setion, we implement the ontent of the methods 'initGui()' and 'unload()'. We needan instane of the lass 'QAtion' that exeutes the 'run()' method of the plugin. With the3

ation objet, we are then able to generate the menu entry and the button:import resouresdef initGui(self):# Create ation that will start plugin on�gurationself.ation = QAtion(QIon(":/plugins/foss4g_plugin/foss4g.png"), "FOSS4G plugin",self.ifae.getMainWindow())# onnet the ation to the run methodQObjet.onnet(self.ation, SIGNAL("ativated()"), self.run)# Add toolbar button and menu itemself.ifae.addToolBarIon(self.ation)self.ifae.addPluginMenu("FOSS-GIS plugin...", self.ation)def unload(self):# Remove the plugin menu item and ionself.ifae.removePluginMenu("FOSSGIS Plugin...", self.ation)self.ifae.removeToolBarIon(self.ation)5.3 Step3: Load a layer from a shape �leShritt3In this step we implement the real funtionality of the plugin in the 'run()' method. TheQt4 method 'QFileDialog::getOpenFileName' opens a �le dialog and returns the path to thehosen �le. If the user anels the dialog, the path is a null objet, whih we test for. We thenall the method 'addVetorLayer' of the interfae objet whih loads the layer. The methodonly needs three arguments: the �le path, the name of the layer that will be shown in thelegend and the data provider name. For shape�les, this is 'ogr' beause QGIS internally usesthe OGR library to aess shape�les:def run(self):�leName = QFileDialog.getOpenFileName(None,QString.fromLoal8Bit("Selet a �le:"),"", "*.shp *.gml")if �leName.isNull():QMessageBox.information(None, "Canel", "File seletion aneled") else:vlayer = self.ifae.addVetorLayer(�leName, "myLayer", "ogr")6 Further informationAs you an see, you need information from di�erent soures to write PyQGIS plugins. Pluginwriters need to know Python and the QGIS plugin interfae as well as the Qt4 lasses andtools. At the beginning it is best to learn from examples and opy the mehanism of existingplugins. Using the QGIS plugin installer, whih itself is a Python plugin, it is possible todownload a lot of existing Python plugins and to study their behaviour.We �nish the tutorial with a seletion of online doumentation that may be usefull forPyQGIS programers: 4

• QGIS wiki: http://wiki.qgis.org/qgiswiki/PythonBindings
• QGIS API doumentation: http://do.qgis.org/index.html
• Qt doumentation: http://do.trollteh.om/4.3/index.html
• PyQt: http://www.riverbankomputing.o.uk/pyqt/
• Python tutorial: http://dos.python.org/
• A book about desktop GIS and QGIS. It ontains a hapter about PyQGIS pluginprograming: http://www.pragprog.om/titles/gsdgis/desktop-gis

5

