
Extending the Fun
tionality of QGIS with Python PluginsWorkshop FOSS4G 2008Dr. Mar
o Hugentobler Dr. Horst Düster Tim SuttonSeptember 20081 Introdu
tionQGIS is a popular desktop GIS written in C++. Besides the possibility of writing extensions inC++, there is the python interfa
e to QGIS (PyQGIS). There are three ways to use PyQGIS:
• From a python
ommand line
onsole whi
h is mainly interesting for debugging.
• As QGIS plugins written in Python. Those plugins may be enabled in the plugin managerjust like C++ plugins.
• Standalone appli
ations in Python with their own user interfa
es may use the fun
tion-ality of the QGIS
ore library.This workshop provides a beginner's tutorial for writing QGIS Python plugins.2 Why Python?Python is a s
ripting language whi
h was designed with the goal of being easy to program.It has a me
hanism that automati
ally releases memory that is no longer used (garbagge
olle
tor). A further advantage is that many programs that are written in C++ or Java o�erthe possibility to write extensions in Python, e.g. OpenO�
e or Gimp. Therefore it is a goodinvestment of time to learn the Python language.3 Li
ensePyQGIS plugins use fun
tionality of libqgis_
ore.so and libqgis_gui.so. As both are li
ensedundere GPL, QGIS Python plugins must be li
en
ed under the GPL too. This means you mayuse your plugins for any purpose and you are not for
ed to publish them. If you do publishthem however, they must be published under the
onditions of the GPL li
ense. With Pythonprograms, this restri
tion is not as important as for
ompiled programs, be
ause the sour
e
ode is visible anyway.

1

4 What needs to be installed to get startedOn the lab
omputers, everything for the workshop is already installed. If you program Pythonplugins at home, you will need the following libraries and programs:
• QGIS
• Python
• Qt
• PyQT
• PyQt development toolsIf you use Linux, there are binary pa
kages for all major distributions. For Windows, thePyQt installer already
ontains Qt, PyQt and the PyQt development tools.5 A PyQGIS Example Plugin in three StepsOur example plugin is intentionally kept simple. It adds a button to the menu bar of QGIS.If the button is
li
ked, a �le dialog appears where the user may load a shape �le.For ea
h python plugin, a dedi
ated folder that
ontains the plugin �les needs to be
reated. By default, QGIS looks for plugins in $QGIS_DIR/share/qgis/python/plugins (inour workshop /usr/share/qgis/python/plugins). On Linux, there is also the possibility to haveplugins in $HOME/.qgis/python/plugins su
h that it is only visible for one user.5.1 Step 1: Make the plugin manager re
ognise the pluginTo provide the ne

essary information for QGIS, the plugin needs to implement the methods'name()', 'des
ription()' and 'version()' whi
h return des
riptive strings. A plugin also needsa method '
lassFa
tory(QgisInterfa
e)' whi
h is
alled by the plugin manager to
reate aninstan
e of the plugin. The argument of type QGisInterfa
e is used by the plugin to a

essfun
tions of the QGIS instan
e. We are going to work with this obje
t in step 2.Note that, in
ontrast to other programing languages, indention is very important. ThePython interpreter throws an error if it is not
orre
t.First we
reate the plugin folder 'foss4g_plugin' in QGIS/python/plugins. Then we addtwo new text�les into this folder, 'foss4gplugin.py' and '__init__.py'.
• The �le foss4gplugin.py
ontains the plugin
lass:# -*-
oding: utf-8 -*-# Import the PyQt and QGIS librariesfrom PyQt4.QtCore import *from PyQt4.QtGui import *from qgis.
ore import *# Initialize Qt resour
es from �le resour
es.pyimport resour
es 2

lass FOSS4GPlugin:def __init__(self, ifa
e):# Save referen
e to the QGIS interfa
eself.ifa
e = ifa
edef initGui(self):print 'Initialising GUI'def unload(self):print 'Unloading plugin'
• The �le __init__.py
ontains the methods 'name', 'des
ription', 'version' and '
lass-Fa
tor'y. As we are
reating a new instan
e of the plugin
lass, we need to import the
ode of this
lass:# -*-
oding: utf-8 -*-from foss4gplugin import FOSS4GPlugindef name():return "FOSS4G example"def des
ription():return "A simple example plugin to load shape�les"def version():return "Version 0.1"def
lassFa
tory(ifa
e):return FOSS4GPlugin(ifa
e)Now the plugin has the ne

essary infrastru
ture to appear in the QGIS plugin managerand be loaded / unloaded.5.2 Step2: Add a button and a menu5.2.1 I
onTo make the i
on graphi
 available for our program, we need a so-
alled resour
e �le. In theresour
e �le, the graphi
 is
ontained in hexade
imal notation. Fortunately, we don't needto
are about its representation be
ause we use the pyr

ompiler, a tool that reads the �le'resour
es.qr
' and
reates a resour
e �le.The �le 'foss4g.png' and the resour
e �le
an be downloaded fromhttp://karlinapp.ethz.
h/python_foss4g. Move these �les into the dire
tory of the exampleplugin. Open a shell,
d to the plugin dire
tory and enter: <path_to_QGIS_folder>/pyr

4-o resour
es.py resour
es.qr
.5.2.2 Add a menu and a buttonIn this se
tion, we implement the
ontent of the methods 'initGui()' and 'unload()'. We needan instan
e of the
lass 'QA
tion' that exe
utes the 'run()' method of the plugin. With the3

a
tion obje
t, we are then able to generate the menu entry and the button:import resour
esdef initGui(self):# Create a
tion that will start plugin
on�gurationself.a
tion = QA
tion(QI
on(":/plugins/foss4g_plugin/foss4g.png"), "FOSS4G plugin",self.ifa
e.getMainWindow())#
onne
t the a
tion to the run methodQObje
t.
onne
t(self.a
tion, SIGNAL("a
tivated()"), self.run)# Add toolbar button and menu itemself.ifa
e.addToolBarI
on(self.a
tion)self.ifa
e.addPluginMenu("FOSS-GIS plugin...", self.a
tion)def unload(self):# Remove the plugin menu item and i
onself.ifa
e.removePluginMenu("FOSSGIS Plugin...", self.a
tion)self.ifa
e.removeToolBarI
on(self.a
tion)5.3 Step3: Load a layer from a shape �leS
hritt3In this step we implement the real fun
tionality of the plugin in the 'run()' method. TheQt4 method 'QFileDialog::getOpenFileName' opens a �le dialog and returns the path to the
hosen �le. If the user
an
els the dialog, the path is a null obje
t, whi
h we test for. We then
all the method 'addVe
torLayer' of the interfa
e obje
t whi
h loads the layer. The methodonly needs three arguments: the �le path, the name of the layer that will be shown in thelegend and the data provider name. For shape�les, this is 'ogr' be
ause QGIS internally usesthe OGR library to a

ess shape�les:def run(self):�leName = QFileDialog.getOpenFileName(None,QString.fromLo
al8Bit("Sele
t a �le:"),"", "*.shp *.gml")if �leName.isNull():QMessageBox.information(None, "Can
el", "File sele
tion
an
eled") else:vlayer = self.ifa
e.addVe
torLayer(�leName, "myLayer", "ogr")6 Further informationAs you
an see, you need information from di�erent sour
es to write PyQGIS plugins. Pluginwriters need to know Python and the QGIS plugin interfa
e as well as the Qt4
lasses andtools. At the beginning it is best to learn from examples and
opy the me
hanism of existingplugins. Using the QGIS plugin installer, whi
h itself is a Python plugin, it is possible todownload a lot of existing Python plugins and to study their behaviour.We �nish the tutorial with a sele
tion of online do
umentation that may be usefull forPyQGIS programers: 4

• QGIS wiki: http://wiki.qgis.org/qgiswiki/PythonBindings
• QGIS API do
umentation: http://do
.qgis.org/index.html
• Qt do
umentation: http://do
.trollte
h.
om/4.3/index.html
• PyQt: http://www.riverbank
omputing.
o.uk/pyqt/
• Python tutorial: http://do
s.python.org/
• A book about desktop GIS and QGIS. It
ontains a
hapter about PyQGIS pluginprograming: http://www.pragprog.
om/titles/gsdgis/desktop-gis

5

